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1. Introduction

Recently, there has been a lot of activity in constructing actions for multiple M2-branes.

This development was spurred by a series of papers by Bagger and Lambert [1 – 3] and Gus-

tavsson [4, 5] (following earlier work of [6, 7]) who made a proposal for a three-dimensional

action describing multiple M2-branes. This action is an N = 8 superconformal Chern-

Simons gauge theory.

It turns out that the original proposal of [1 – 5] is rather restrictive. The presence

of a so-called fundamental identity leads to a basically unique solution with SO(4) gauge

group (or direct sums thereof) [8, 9] that describes a system of two M2-branes on an

orbifold [10, 11]. To describe more general M2-brane systems an extension of the original

proposal is needed and several extensions have been considered. A possibility is to consider

supersymmetric gauge theories without a Lagrangian [12]. Also massive extensions break-

ing the conformal invariance have been constructed [13 – 15]. More recently, new extensions
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to arbitrary gauge groups of the Bagger-Lambert theory have been proposed that make use

of an invariant metric that is not positive definite [16 – 18]. This has the potentially trou-

blesome feature that it introduces ghosts, an issue which has been addressed in [19 – 21].

In addition, Chern-Simons theories with less supersymmetries in the context of M2-branes

have been considered [22, 23]. For other related work on multiple M2-branes, see [24].

The recent interest in multiple membranes deals with the properties of globally N = 8

supersymmetric gauge theories in three dimensions. Independent of this, a lot is known

about the construction of locally N = 8 supersymmetric theories in three dimensions.

There are a few parallel developments in constructing theories with global versus local

supersymmetry. For instance, one issue with the construction of an N = 8 supersymmetric

gauge theory in three dimensions is the origin of the gauge fields. To describe M2-brane

actions one needs to work with the maximum number 8N of scalar kinetic terms and there

is no room for a vector field kinetic term. The way out was given in [6]. The vector fields

needed for the gauging only occur inside the covariant derivatives and via a Chern-Simons

term but do not have a kinetic term. Their field equations lead to a duality relation

between the vectors and the scalars such that no new degrees of freedom are introduced.

Precisely the same issue was encountered in the construction of gauged supergravity in

three dimensions [25 – 27]. For instance, in N = 8 supergravity all bosonic degrees of

freedom are described by scalars parametrizing the coset SO(8, N)/(SO(8)× SO(N)), and

there are no vector fields left to perform the gauging. The resolution proposed in [25, 26] is

the same as in the globally supersymmetric case: the vector fields only occur via covariant

derivatives and a Chern-Simons term.

A noteworthy feature of gauged supergravities in three dimensions is that it suffices

to restrict oneselves to theories in which the Yang-Mills gauge fields only occur via a

Chern-Simons term without a separate kinetic term. This is due to the existence of a

non-Abelian duality which states that any Yang-Mills theory in three dimensions can be

re-interpreted as the sum of kinetic terms for scalar fields and a B ∧ F (A) Chern-Simons

gauge theory (containing two distinct vector fields A and B) based on a non-semi-simple Lie

algebra [28, 29]. It is via such Chern-Simons terms that we recover, after applying the non-

Abelian duality, results for multiple D2-brane actions as well. We will also encounter Chern-

Simons gauge theories of the type A∧F (A), which are topologically massive gauge theories.

The construction of [25, 26] classifies the most general gaugings in supergravity, which

are encoded in the ‘embedding tensor’. The role of this tensor is to specify which subgroup

of the global symmetry group is gauged and which vectors are needed to perform this

gauging. Originally this technique was developed to construct maximal supergravity in

three dimensions and was later applied to the N = 8 case [27, 29] and in higher dimensions

as well [30 – 37]. The same technique can be applied to supersymmetric gauge theories. This

has been done to construct the gaugings of N = 2 supersymmetry in four dimensions [38]

and, more recently, to reconstruct [39] the supersymmetric gauge theory of [1 – 5]. In the

latter case the embedding tensor is a 4-index anti-symmetric tensor of SO(N) that coincides

with the ‘structure constants’ of the three-algebra occurring in the construction of [1 – 5].

In contrast to the supersymmetric gauge theory with the unique SO(4) gauge group

of [1 – 5], in supergravity a wide variety of gaugings is possible. In particular, one can
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embed the gauge group into the non-compact group SO(8, N) whereas only subgroups of the

compact SO(N) group are gauged in [1 – 5]. In this work we want to investigate the relation

between the two types of theories and their gaugings. In particular we want to address

the following question: starting from N = 8 gauged supergravity in three dimensions, can

we take the limit of global supersymmetry and if so, does this lead to known and/or new

supersymmetric gauge theories describing multiple branes?

In order to answer this question we have organised this paper as follows. In section

2 we will first write down the N = 8 supergravity theory and next consider the limit to

global supersymmetry. Furthermore, we will present the general result for the globally

supersymmetric theory. In section 3 we focus in on the separate deformations and discuss

their interpretation in terms of multiple branes. Our conclusions are presented in section

4. Finally, appendix A contains our conventions and useful formulae for the SO(8, N)

structure of supergravity.

2. Gauged N = 8 supergravity and its global limit

2.1 The Lagrangian and the embedding tensor

We start by reviewing N = 8 gauged supergravity in D = 3 [27, 29]. For an overview of

our conventions see appendix A.

The N = 8 supergravity multiplet consists of the metric gµν and 8 gravitini ψA
µ . All

these fields are topological and do not describe physical degrees of freedom. Therefore,

all local degrees of freedom reside in scalars and Majorana spinor fields. In the case of N

matter multiplets, there are 8N scalars XaI , a = 1, . . . , N , parameterizing the coset space

SO(8, N)/(SO(8) × SO(N)), and 8N spinors denoted by χȦa. The coset dynamics of the

scalar fields is expressed in terms of the group-valued matrix L(x) ∈ SO(8, N). It can be

parameterized in terms of scalars in the following way

L(x) = exp
(

XIa(x)tIa
)

, (2.1)

where {tIJ , tab} and {tIa} denote the compact and non-compact generators of so(8, N),

c.f. the appendix. To be more precise, we have gauge-fixed the local SO(8) × SO(N)

symmetry by setting the compact part of L to zero.

In order to gauge a certain subgroup G0 of the (rigid) duality group SO(8, N) one

introduces gauge-covariant derivatives in the definition of the Maurer-Cartan forms as

follows:

L−1
(

∂µ + ΘαβAµ
αtβ

)

L =:
1

2
Qµ

IJ tIJ +
1

2
Qµ

abtab + Pµ
IatIa . (2.2)

Here tα denote the generators of SO(8, N), α, β, . . . = 1, . . . , 1
2(N+8)(N+7), with structure

constants fαβ
γ . Furthermore, we have introduced gauge fields Aµ

α in the adjoint repre-

sentation of so(8, N) and the symmetric embedding tensor Θαβ [27]. The latter encodes

the embedding of the gauge group G0 into the global symmetry group SO(8, N). To be

more precise, the generators of G0 are given by

Xα = Θαβt
β , (2.3)
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and so the embedding tensor singles out those generators that span the gauge group. In

particular, the dimension of the gauge group is determined by the rank of Θαβ.

The gauged supergravity Lagrangian is completely determined by the embedding ten-

sor and given by [27]

L = −
1

2
κ−2eR+ εµνρψ̄A

µDνψ
A
ρ +

1

2
κ−2ePµ

IaPµIa − ie χ̄ȦaγµDµχ
Ȧa (2.4)

−
1

2
Θαβε

µνρAµ
α

(

∂νAρ
β +

1

3
Θγδf

βδ
ǫAν

γAρ
ǫ

)

− ePµ
Iaχ̄ȦaΓI

AȦ
γνγµψA

ν

+κ−2eAAB
1 ψ̄A

µ γ
µνψB

ν + 2iκ−2eAA,Ȧa
2 χ̄ȦaγµψA

µ + κ−2eAȦa,Ḃb
3 χ̄ȦaχḂb − κ−6e V ,

where κ is the square root of Newton’s constant with mass dimension1 −1
2 and γµ and

ΓI
AȦ

are gamma matrices of SO(1, 2) and SO(8), respectively. Furthermore, the covariant

derivatives Dµ on the spinors are given by

Dµψ
A
ν = ∇µψ

A
ν +

1

4
QIJ

µ ΓIJ
ABψ

B
ν ,

Dµχ
Ȧa = ∇µχ

Ȧa +
1

4
QIJ

µ ΓIJ
ȦḂ
χḂa + Qab

µ χ
Ȧb ,

(2.5)

and contain the (composite) SO(8)×SO(N) connections defined in (2.2). Finally, the scalar-

dependent Yukawa couplings given by A1,2,3 and the scalar potential V are completely

determined by the embedding tensor via the so-called T-tensor

T
¯
α,

¯
β = ΘαβV

α

¯
αV

β

¯
β , (2.6)

where α, β, . . . are flat indices corresponding to the local SO(8)× SO(N) action. Here V is

the adjoint SO(8, N) matrix, defined through

L−1tαL = Vα

¯
αt¯

α =
1

2
Vα

IJ t
IJ +

1

2
Vα

abt
ab + Vα

Iat
Ia . (2.7)

In terms of the T-tensor the Yukawa couplings read

AAB
1 = −δABθ −

1

48
ΓIJKL

AB TIJ,KL , AA,Ȧa
2 = −

1

12
ΓIJK

AȦ
TIJ,Ka , (2.8)

AȦa,Ḃb
3 = 2δȦḂδabθ +

1

48
δabΓIJKL

ȦḂ
TIJ,KL +

1

2
ΓIJ

ȦḂ
TIJ,ab ,

where θ = 2
(N+8)(N+7)η

αβΘαβ denotes the trace of the embedding tensor with respect to

the Cartan-Killing form ηαβ of SO(8, N). The scalar potential V is given by

V = −
1

2

(

AAB
1 AAB

1 −
1

2
AA,Ȧa

2 AA,Ȧa
2

)

. (2.9)

The local supersymmetry transformations leaving (2.4) invariant are given by

δǫeµ
r = iκ ǫAγrψA

µ , δǫψ
A
µ = κ−1Dµǫ

A + iκ−3 AAB
1 γµǫ

B , (2.10)

δǫAµ
α = −

1

2
κ−1 Vα

IJ ǭ
AΓIJ

ABψ
B
µ + iκ−1 Vα

Iaǭ
AΓI

AȦ
γµχ

Ȧa ,

δǫχ
Ȧa =

1

2
iκ−1 ΓI

AȦ
γµǫAPµ

Ia + κ−3AA,Ȧa
2 ǫA , L−1δǫL = κ ǭAΓI

AȦ
χȦatIa ,

1The mass dimensions of {gµν , ψ
A
µ , Aµ

α , χȦa , XIa} are given by {0 , 1 , 1 , 1 , 0}.
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where we assign mass dimension −1
2 to the supersymmetry parameter ǫ.

However, consistency of the gauged supergravity theory requires linear and quadratic

constraints on the embedding tensor. First of all, gauge invariance of (2.4) requires invari-

ance of the embedding tensor Θαβ under the adjoint action of the gauge group generators

Xα. This implies the quadratic constraint

Qα,βγ ≡ ΘαδΘǫ(βf
δǫ

γ) = 0 , (2.11)

which is also sufficient for closure of the gauge algebra. Beyond this quadratic constraint,

invariance of (2.4) under supersymmetry requires a linear constraint, which takes a “duality

covariant” form. The embedding tensor reads Θαβ = Θ[IJ ],[KL], I,J , . . . = 1, . . . , 8 + N ,

where we have introduced adjoint indices for SO(8, N). Due to its symmetry, a priori it

takes values in the symmetric tensor product

(

⊗

)

sym

= 1 ⊕ ⊕ ⊕ , (2.12)

in which the Young tableaux refer to tensors of the full duality group SO(8, N). However,

supersymmetry restricts the irreducible representations in (2.12) to a subclass. Specifically,

in the given case it eliminates the irreducible representation corresponding to the window

tableau [29]. In other words, the linear constraint can be written as

ΘIJ ,KL = θδI[KδL]J + 2fIJKL + h[K[IδJ ]L] , (2.13)

where fIJKL is totally antisymmetric and hIJ symmetric-traceless. For any choice of

the embedding tensor satisfying the quadratic and linear constraints (2.11) and (2.13)

one obtains a consistent gauged supergravity, which is invariant under the supersymmetry

transformations (2.10).2

2.2 The limit to global supersymmetry

We will now discuss the limit to global supersymmetry, i.e. we decouple gravity by sending

Newton’s constant, or its square root κ, to zero. We will find that this limit can only be

taken provided a number of additional constraints is imposed on the embedding tensor.

To take the flat space limit, we have to expand the metric around Minkowski spacetime

according to

gµν = ηµν + κhµν . (2.14)

In the limit κ → 0, the spin-2 multiplet {hµν , ψ
A
µ } decouples and can therefore be set

to zero. This restricts the parameters ξµ of general coordinate transformations and the

parameters ǫA of supersymmetry to those satisfying the equations ∂µ ξν +∂ν ξµ = ∂µǫ
A = 0.

Thus, we obtain a globally supersymmetric theory, in which ǫA is constant. Moreover, in

2We should note that the expressions (2.8) for the Yukawa couplings are valid provided the embedding

tensor satisfies the stronger constraint hIJ = 0. We verified that in the presence of hIJ one can still take

the global limit to be discussed below. For the general formulae see [29].
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order to obtain a non-singular limit, in which non-trivial gaugings survive, it turns out to

be necessary to rescale the fields and various components of the embedding tensor with

powers of κ. Specifically, we redefine the scalar fields according to

XIa → κXIa , (2.15)

such that their mass dimension is 1
2 , and we redefine the gauge vectors depending on their

SO(8) × SO(N) indices according to

Aµ
ab → Aµ

ab , Aµ
aI → κ−1Aµ

aI , Aµ
IJ → κ−1Aµ

IJ . (2.16)

Moreover, we require the following scaling weights for the components of the embedding

tensor,

Θab,cd : 0 , Θab,cI ,Θab,IJ : 1 , ΘaI,cJ ,ΘaI,JK ,ΘIJ,KL : 2 (2.17)

where we indicated the powers of κ.

Let us now explain the limit and the origin of the different scaling weights in more

detail. First of all, inspection of the scalar-kinetic terms shows by use of the expansion of

the Maurer-Cartan forms (A.6) that the terms of higher order in X will drop out. In other

words, the scalar manifold reduces to a flat space. This can be interpreted as an Inönü-

Wigner contraction of the original coset space, for which one rescales the non-compact

generators by t̄Ia = κtIa and sends κ → 0. This leaves the algebra, see eq. (A.2), intact,

except the brackets in the last line, which become Abelian. Put differently, the Lie algebra

reduces to a semi-direct product between SO(8) × SO(N) and 8N translations. The coset

space reduces accordingly to

(SO(8) × SO(N)) ⋉ R
8N

SO(8) × SO(N)
∼= R

8N . (2.18)

Note that the isometry group I SO(8N) of R
8N is much larger than the expected symmetry

group (SO(8) × SO(N)) ⋉ R
8N . However, this symmetry enhancement only holds for the

scalar kinetic terms, and does not extend to the full theory.

The scaling weights of the gauge fields are uniquely determined by requiring that the

supersymmetry transformations of the vectors in (2.10) are both non-singular and non-zero

in the limit κ→ 0. For instance, one finds

δǫAµ
IJ = −ǭAΓIJ

AB ψ
B
µ . (2.19)

One may verify that the global supersymmetry algebra is realized on these vector fields

provided that the following constraints are satisfied:3

εµνρ∂νAρ
IJ = 0 . (2.20)

3Similarly, it has recently been found that one can realize the supersymmetry algebra of D = 5,N = 2

supergravity on (D − 2)-forms with vanishing field strengths [40].
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We note that the supersymmetry variation of these gauge vectors is proportional to the

gravitino. Therefore they belong to the topological spin-2 multiplet {gµν , ψ
A
µ , Aµ

IJ} and

we will henceforth set them to zero. In contrast, we will see below that the other two

representations of gauge vectors in (2.16) are related to the matter spinors χ under super-

symmetry. Therefore they belong to the matter multiplets and will make their appearance

in the globally supersymmetric theory. We also note that the scaling weights (2.17) lead

to a non-singular limit for the leading Chern-Simons terms, which otherwise would require

certain components of the embedding tensor to vanish.

Let us now turn to the constraints of the embedding tensor describing globally su-

persymmetric theories. The linear constraints (2.13) ensure that the gauged supergravity

action is a consistent starting point. However, in order to have a well-defined limit fur-

ther constraints are required, which we derive by inspecting the Yukawa couplings Ai with

i = 1, 2, 3. We first consider the scalar potential. To avoid any divergent terms, both A1

and A2 have to scale with weight 3. Turning to the supersymmetry variation of the grav-

itino, the right hand side only vanishes if A1 actually scales with weight 4. This has the

effect that A1 completely drops out of the theory in the global limit, as expected. Finally,

the scaling weight of A3 has to be 2, as can be deduced from the relevant term in the

Lagrangian. We thus end up with the following scaling weights for A1, A2 and A3 :

A1 : 4 , A2 : 3 , A3 : 2 . (2.21)

From the expressions (2.8), (A.8) for A1, A2 and A3 we deduce that the above scaling

requirements lead to the following linear constraints on the embedding tensor:

θ = 0 , Θab,IJ = 0 , Θ−
IJ,KL = 0 , Θa[I,JK] = 0 , (2.22)

where Θ−
IJ,KL denotes the anti-self-dual part of ΘIJ,KL.

Apart from the constraints (2.22) resulting from the requirement of a non-singular

limit, there is a second source of linear constraints. This is related to the fact that the

original linear constraint (2.13) of supergravity cannot simply be taken over to the globally

supersymmetric case due to the following reason. The symmetric-traceless solution hIJ , for

instance, in general gives rise to components of the embedding tensor that scale differently.

For instance, if hIJ takes non-zero values only in the SO(N) direction, parameterized by

a symmetric-traceless SO(N) tensor hab, one obtains from (2.13) the components4

Θab,cd = h[a[cδd]b] , ΘaI,bJ =
1

4
habδIJ . (2.23)

Since according to (2.17) we keep the first component unchanged, while rescaling the second

embedding tensor by κ2, the resulting couplings live in different sectors characterized by

embedding tensors of different mass dimension. In general the supersymmetry will therefore

be violated. Thus, in order to maintain supersymmetry, we have to impose additional linear

constraints, eliminating all solutions of (2.13) which give rise to relations between different

components of Θ with different scaling weights, like in (2.23). This sets the singlet θ to

4We thank Hermann Nicolai for discussions on this point.
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zero, which follows already from (2.22), as well as the components fIJab of the 4-index

anti-symmetric tensor and the components hab and hIa of the symmetric-traceless tensor.

Summarizing, we find from the above considerations that the only components of the

embedding tensor that survive the limit of global supersymmetry are given by

fabcd , fabcI , f+
IJKL , hIJ , (2.24)

where f+
IJKL indicates the self-dual part of fIJKL.

Finally, we consider the quadratic constraints. One way to derive these constraints

after the rescalings is to consider the gauge variation of the action before imposing any

constraints. For instance, the Chern-Simons term varies according to [39, 41]

δLCS ∼ εµνρQα,βγAµ
αAν

βDρΛ
γ . (2.25)

Suppose the gauge vectors and their symmetry parameters in AADΛ will scale with κ−r

for some r, as follows from (2.16). Then only those parts of Qα,βγ will not disappear in

the limit κ → 0, whose dependence on κ is κs with s ≤ r. For instance, since the SO(N)

gauge vectors do not scale with κ, only those terms in Qab,cd,ef should be imposed as a

constraint that scale with κ0. This in turn implies that in the latter component only the

pure SO(N) structure constants enter, while in the full quadratic constraints of supergrav-

ity also the non-compact faI,bJ
cd appear. Similarly, one derives for all other components

that the non-trivial parts of the quadratic constraint tensor involve only the structure con-

stants corresponding to SO(N)⋉ R
8N . In other words, denoting these structure constants,

i.e. fab,cd
ef and fab,cI

dJ , collectively by f̄αβ
γ , the quadratic constraints imposed by global

supersymmetry take formally the same form as in (2.11), but with f replaced by f̄ ,

Qα,βγ ≡ ΘαδΘǫ(β f̄
δǫ

γ) = 0 . (2.26)

Moreover, since we set Aµ
IJ and its gauge parameter to zero, all components of (2.26) whose

external indices take values in the [IJ ] direction, need not to be imposed as constraints.

Explicitly one then finds the following non-trivial components:

Qab,cd,ef =
1

2

(

Θab,egΘ
g
f,cd − Θab,fgΘ

g
e,cd + Θab,cgΘ

g
d,ef − Θab,dgΘ

g
c,ef

)

, (2.27)

QaI,bJ,cd =
1

2
(ΘaI,c

gΘgd,bJ − ΘaI,d
gΘgc,bJ − ΘaI,gbΘ

g
J,cd) , (2.28)

Qab,cd,eI =
1

2
(Θab,egΘ

g
I,cd + Θab,gIΘ

g
e,cd + Θab,cgΘ

g
d,eI − Θab,dgΘ

g
c,eI) , (2.29)

QaI,bc,de =
1

2

(

ΘaI,d
hΘhe,bc − ΘaI,e

hΘhd,bc + ΘaI,b
hΘhc,de − ΘaI,c

hΘhb,de

)

, (2.30)

Qab,cI,dJ = Θab,c
eΘeI,dJ + Θab,d

eΘeJ,cI , (2.31)

QaI,bJ,cK = ΘaI,b
dΘdJ,cK + ΘaI,c

dΘdK,bJ , (2.32)

where all indices are raised and lowered with the ordinary Kronecker symbol.

Let us note that in our present analysis the quadratic constraints have been simpli-

fied as compared to supergravity, since we effectively deal only with gauge groups inside
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SO(N) ⋉ R
8N . In contrast, the linear constraints are as in supergravity, but supplemented

with further constraints. However, this does not exclude the possibility that there exist

globally-supersymmetric N = 8 theories that satisfy weaker constraints, but which cannot

be obtained as limits of supergravity in the given way.

2.3 The globally supersymmetric N = 8 theory

In this subsection we summarize the resulting globally supersymmetric action, after taking

the limit of N = 8 gauged supergravity5 as defined in the previous section.

The Lagrangian of the globally supersymmetric theory is given by

L = +
1

2
DµX

IaDµXIa − ie χ̄ȦaγµDµχ
Ȧa −

1

2
Θαβε

µνρAµ
α

(

∂νAρ
β +

1

3
Θγδ f̄

βδ
ǫAν

γAρ
ǫ

)

+AȦa,Ḃb
3 χ̄ȦaχḂb − V . (2.33)

Here the covariant derivatives of the scalars and fermions are

DµX
aI = ∂µX

aI + Θab,cdAµ
cdXbI +

1

2
ΘaI,bcAµ

bc + Θab,cJAµ
cJXbI + ΘaI,bJAµ

bJ ,

Dµχ
Ȧa = ∂µχ

Ȧa + Qµ
abχȦb , Qµ

ab =
1

2
Θab,cdAµ

cd + Θab,cIAµ
cI (2.34)

while the different Yukawa couplings are given by6

AA,Ȧa
2 = −

1

12
ΓIJK

AȦ
(−Θab,cdX

b
KX

c
IX

d
J − ΘaK,bcX

b
IX

c
J + 2Θab,c[IX

c
J ]X

b
K+

+ 2ΘaK,b[IX
b
J ] + ΘIJ,KLX

L
a) ,

AȦa,Ḃb
3 = +

1

48
δabΓIJKL

ȦḂ
ΘIJ,KL +

1

2
ΓIJ

ȦḂ
(−Θab,cdX

c
IX

d
J + 2Θab,c[IX

c
J ]) , (2.35)

The scalar potential is positive definite in the global case and reads

V =
1

4
AA,Ȧa

2 AA,Ȧa
2 . (2.36)

The Lagrangian is invariant under the following global N = 8 supersymmetry trans-

formations:

δǫX
Ia = ǭAΓI

AȦ
χȦa , δǫχ

Ȧa =
1

2
iΓI

AȦ
γµǫADµX

Ia +AA,Ȧa
2 ǫA ,

δǫA
ab
µ = −2i ǭAΓI

AȦ
γµX

I[aχb]Ȧ , δǫA
aI
µ = i ǭAΓI

AȦ
γµχ

Ȧa ,

(2.37)

provided that the linear constraints implied by (2.24) and the quadratic constraints (2.26),

are satisfied.

To summarize, for any choice of the embedding tensor components given in (2.24) that

satisfy the quadratic constraints (2.26) we obtain a consistent globally supersymmetric N =

8 theory. The physical interpretation of the different representations are quite different.

5We will omit overall κ-dependences w.r.t. the supergravity expressions, as these will drop out.
6See, however, the provision made in footnote 2.
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component gauge vector gauging mass dim. V interpretation

fabcd Aab
µ SO(N) (0, 1) X6 CS gauging

fabcI

AaI
µ

Aab
µ

SO(N)

R
8N

(1
2 ,

1
2 )

(1
2 , 1)

X4 YM gauging

f+
IJKL − − (1,−) X2 massive CS

hIJ AaI
µ R

8N (1, 1
2 ) X2 top. mass. YM

Table 1: The different SO(8) × SO(N) representations of the embedding tensor that survive the

limit of global supersymmetry, and the resulting gauging and gauge vectors (if applicable). The

next columns indicate the mass dimensions of the Θαβ and Aµ
γ components and the order of the

resulting scalar potential. The interpretation of the different models will be put forward in the next

sections.

We will illustrate this with a few examples in the next section. For the moment we note

that an understanding of what these different representations signify can be obtained from

the covariant derivatives of the scalars and fermions (2.34). From these one can infer that

fabcd induces a compact SO(N) gauging, while hIJ gauges the non-compact translations

R
8N . The representation fabcI corresponds to a semi-direct product of compact and non-

compact gaugings in SO(N) ⋉ R
8N . Finally, the representation fIJKL drops out from the

covariant derivatives and therefore is a massive deformation instead of a gauging. For more

information, see table 1.

Note that for our choice of scalings the R-symmetry SO(8) is never gauged; the com-

ponents that give rise to the R-symmetry gaugings in supergravity either drop out or are

massive deformations. Furthermore, from the table we conclude that only fabcd can give

rise to a conformally invariant theory with a sextet potential. In the next sections we will

consider the various representations separately.

3. World-volume actions for multiple membranes

In this section we consider different examples of globally supersymmetric N = 8 theories

obtained from gauged supergravity in order to illustrate the different possible gaugings

outlined in the previous section (see the table). These can be interpreted as different

world-volume actions for multiple 2-branes. An overview of our conventions can be found

in appendix A.

3.1 Conformal gaugings and multiple M2-branes

In view of their applications to multiple M2-brane actions we first consider the conformal

gaugings with fabcd 6= 0.
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3.1.1 Bagger-Lambert theory

To reproduce the Bagger-Lambert theory we choose [39]:

Θab,cd = 2 fabcd , fabcd = f[abcd] . (3.1)

This provides a particular solution of the linear constraints, while the quadratic constraint

reduces to the fundamental identity of [2]. The Lagrangian reads

L =
1

2
DµX

IaDµXIa − iχ̄ȦaγµDµχ
Ȧa + fabcdΓ

IJ
ȦḂ
Xc

IX
d
J χ̄

ȦaχḂb (3.2)

−
1

4
εµνρfabcdAµ

ab

(

∂νAρ
cd +

2

3
fd

efhAν
efAρ

ch

)

− V ,

where the covariant derivatives are given by

DµX
aI = ∂µX

aI +Aµ
cdfcdabX

bI , Dµχ
Ȧa = ∂µχ

Ȧa +Aµ
cdfcdabχ

Ȧb . (3.3)

This is equivalent to the Bagger-Lambert action [2]. The supersymmetry variations (2.10)

reduce to

δǫX
aI = ǭAΓI

AȦ
χȦa , (3.4)

δǫχ
Ȧa =

i

2
ΓI

AȦ
γµǫADµX

Ia +
1

6
fabcdΓ

IJK
AȦ

Xb
IX

c
JX

d
Kǫ

A ,

δǫAµ
ab = −2iǭAΓI

AȦ
γµX

I[aχb]Ȧ ,

in agreement with the superconformal symmetry of [2].

3.2 Non-conformal gaugings and multiple D2-branes

We now consider the non-conformal gaugings with fabcI 6= 0. As we will see, this rep-

resentation leads to supersymmetric Yang-Mills theories and multiple D2-brane actions.

We first discuss the non-semi-simple gaugings triggered by this representation and next

consider the non-Abelian duality that converts the resulting action into a supersymmetric

Yang-Mills theory.

3.2.1 Non-semi-simple gauge groups

To construct multiple D2-brane actions with kinetic Yang-Mills terms we must consider

gauge groups that are not semi-simple. Specifically, this incorporates gauge groups, whose

generators are partially in the direction of the non-compact taI .

We consider the simplest case, where only Θab,cI is non-zero. The SO(8) indices are

decomposed according to I = (i, 8), with i = 1, . . . , 7, i.e. we are going to break the R-

symmetry group to SO(7). The explicit ansatz is given by the completely antisymmetric

continuation of

Θab,c8 = −gYM fabc , (3.5)
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while all other components vanish. Here, fabc are the structure constants of an arbitrary

N -dimensional Lie algebra with an invariant tensor (in particular, fabc is totally antisym-

metric) and gYM is the Yang-Mills coupling constant which has mass dimension 1
2 . This

ansatz gives rise to two types of gauge group generators Xα according to (2.3): either

proportional to tab or taI . Denoting the former by X and the latter by T, respectively, this

amounts to a gauge algebra, which schematically reads

[

X,X
]

⊂ X ,
[

X,T
]

⊂ T ,
[

T,T
]

= 0 . (3.6)

More precisely, this describes a semi-direct product between, say, a semi-simple Lie algebra

g with structure constants fabc and the dim(g) abelian translations T.

In order to verify that (3.5) gives rise to a consistent gauging, we have to check the

quadratic constraints. Following the discussion in the previous section it turns out that

the only surviving quadratic constraint components are QaI,bJ,cd leading to the constraints

ΘaI,c
gΘgd,bJ − ΘaI,d

gΘgc,bJ − ΘaI,gbΘ
g
J,cd = 0 . (3.7)

For the ansatz (3.5), this is satisfied by virtue of the Jacobi identities for fabc, where we

assume that its invariant tensor is given by δab, possibly after a suitable change of basis.

We conclude that we can gauge an arbitrary Lie group.

3.2.2 Multiple D2-branes through non-abelian duality

The world-volume theories of multiple D2-branes are known to be Yang-Mills gauge theories

— as opposed to the Chern-Simons gauge theories discussed above — and are not confor-

mally invariant. In fact, these two features are related, since in a non-abelian Yang-Mills

term the gauge coupling constant needs to be dimensionful in D 6= 4, thus breaking the

conformal invariance. In contrast, in the Chern-Simons gauge theories the gauge coupling

can be chosen to be dimensionless.

To make contact with multiple D2-brane actions we now apply the non-Abelian duality

of [28] converting the Yang-Mills Chern-Simons term into a standard Yang-Mills kinetic

term. We use the ansatz (3.5) for the embedding tensor, where we may think of the

structure constants as defining SU(N). There are two types of scalars, Xai (i = 1, . . . , 7)

and X̄a = Xa8, for which the covariant derivatives read

DµX
ai = ∂µX

ai + gYMf
a
bcAµ

bXci ,

DµX̄
a = ∂µX̄

a + gYMf
a
bcAµ

bX̄c +Bµ
a ,

(3.8)

where we defined

Aµ
a ≡ Aµ

a8 , Bµ
a ≡

1

2
Θa8,bcAµ

bc . (3.9)

The resulting action reads

LD2 =
1

2
DµX

iaDµXia +
1

2
DµX̄

aDµX̄a − iχ̄ȦaγµDµχ
Ȧa (3.10)

−
1

2
εµνρBµaFνρ

a + χ̄afabcΓ
8iXibχc − V ,
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with the non-abelian field strength

Fµν
a = ∂µAν

a − ∂νAµ
a + gYM fa

bcAµ
bAν

c . (3.11)

The scalar potential is the quadratic expression in A2, given by

AA,Ȧa
2 = −

1

4
Γij8

AȦ
gYM fabcX

b
iX

c
j . (3.12)

To see the equivalence to Yang-Mills gauge theories, we observe that Bµ
a enters only

algebraically and it can therefore be integrated out. The Stückelberg shift symmetry on

the extra scalars X̄a apparent in (3.8) can be used to gauge this scalar to zero. In turn,

the field equations for Bµ
a read Bµ

a = 1
2εµνρF

νρa. After reinsertion into (3.10), we obtain

a supersymmetric action with Yang-Mills type kinetic term,

LD2 =
1

2
DµX

iaDµXia −
1

4
FµνaFµν

a − iχ̄ȦaγµDµχ
Ȧa + χ̄afabcΓ

8iXibχc − V, (3.13)

which is the standard super-Yang-Mills action for D2-branes. This dualization converted

the topological gauge vectors into propagating fields, then carrying the degrees of freedom

of the scalars X̄a.

It is instructive to compare our results on multiple D2-brane actions with the recent

proposal of [16 – 18]. These theories contain two extra scalars with wrong-sign kinetic terms

and thus may lead to ghosts. In a recent development it has been pointed out that these

ghosts can be avoided if a different model is used where a translational symmetry, which

is present in the original theory, is gauged [19 – 21]. After gauge fixing the translational

symmetry and integrating out some of the fields one ends up with a supersymmetric Yang-

Mills theory. In this context, we note that starting from three-dimensional Yang-Mills

theory the coupling constant gYM can be promoted to a scalar field X+ by replacing in the

Lagrangian LYM the coupling constant gYM by X+ and adding to the Lagrangian a term

with a Lagrange multiplier 2-form gauge field Cµν such that we obtain the total Lagrangian7

Ltotal = LYM + εµνρ ∂µX+Cνρ . (3.14)

In a second step we define a vector field C̃
µ
≡ εµνρ Cνρ and introduce a second scalar

field X− via the Stueckelberg redefinition C̃
µ

= Cµ − ∂µX− with the corresponding shift

symmetry δCµ = ∂µλ , δX− = λ. This leads to a gauge-equivalent Lagrangian of the form

Ltotal = LYM − ∂µX+

(

∂µX− − Cµ
)

(3.15)

which is of the type considered in [19 – 21].

3.3 Massive deformations

It is well-known that background fluxes may lead to massive deformations of the worldvol-

ume theory. Two exampes will be discussed here: the first is triggered by a four-form flux

in M-theory and was recently considered in [13, 14], while the second is known to arise if

the mass parameter of IIA supergravity is turned on [42]. We will show how these massive

deformations also fall in the framework of section 2.3.

7More generally, we may replace the full embedding tensor by a set of scalar fields, see [39].

– 13 –



J
H
E
P
0
8
(
2
0
0
8
)
0
9
1

3.3.1 Massive Bagger-Lambert theory

To reproduce the massive deformation of [13, 14] we choose

ΘIJ,KL = µ
(

ǫĪ J̄K̄L̄ , ǫ
¯
I
¯
J

¯
K

¯
L

)

, Θab,cd = 2 fabcd , fabcd = f[abcd] , (3.16)

where µ is a mass parameter and we have written the SO(8) index I as I = (Ī ,
¯
I) in terms

of SO(4) × SO(4) indices. The components ΘIJ,KL are self-dual, i.e. Θ−
IJ,KL = 0, which is

consistent with the linear constraints. Note that the SO(8) and SO(N) sectors decouple

in the quadratic constraints.

With respect to the Bagger-Lambert theory the Yukawa coupling A2 in (2.35) contains

an extra term proportional to µ. Since the potential is quadratic in A2 we have two further

terms in the potential: one mass term quadratic in µ and X and one flux term quartic in

X and linear in µ. This precisely reproduces the results of [13, 14].

3.3.2 Topologically massive D2-branes

We next consider an embedding tensor given by the symmetric-traceless tensor in (2.13)

with respect to SO(8). There are several possible solutions as, for instance,

h88 = 1 , hij = −
1

7
δij , (3.17)

where we have split again the indices according to I = (i, 8). This breaks the R-symmetry to

SO(7). Therefore, it might be interpreted as a D2 brane action in a massive IIA background,

which is known to lead to topologically massive vectors on the world-volume [42]. Instead

of constructing a specific model, we are going to show that such a gauging generically leads

to topologically massive gauge vectors. The excited components are ΘaI,bJ and ΘIJ,KL.

The latter component does not appear in covariant derivatives, neither in Chern-Simons

terms, after consistently setting Aµ
IJ = 0. For the bosonic couplings we therefore focus on

the covariant derivatives

DµX̄
aI = ∂µX̄

aI +mAµ
aI , (3.18)

where Aµ
aI = ΘaI,bJAµ

bJ and we have pulled out a mass parameter m, in accordance with

the mass dimension of Θ. In the limit, the Chern-Simons term reduces to an abelian term,

such that one finds in total

LmD2 =
1

2
DµX

aIDµXaI −
1

2
mεµνρAµ

aI∂νAρ
aI + · · · , (3.19)

where we focused on the relevant couplings. It would be interesting the inspect the su-

persymmetry in more detail. However, due to the provision expressed in footnote 2, we

postpone this to later work. Using the shift symmetry, we can gauge-fix XaI to zero, after

which the equations of motion for the gauge vectors read

εµνρ∂νAρ
aI = mAµaI . (3.20)
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This describes one massive spin-1 degree of freedom [43], which follows from the fact

that (3.20) implies the two equations

∂µFµν
aI = −

1

2
mενρλF

ρλaI = −m2Aν
aI , ∂µAµ

aI = 0 . (3.21)

An equivalent description of a single massive degree of freedom carried by a vector is given

by the sum of a Maxwell term and a Chern-Simons term. Both provide a gauge-invariant

description of massive vectors, which is a peculiarity in three dimensions. Furthermore, it

can be checked that the quadratic constraints allow for the inclusion of Θab,cI in addition

to the symmetric traceless component. With the Ansatz (3.5) the interpretation of this

combination is clear: this is equivalent to a topologically massive Yang-Mills theory.

4. Conclusions

In this work we derived a general framework for constructing gaugings and massive de-

formations of N = 8 (conformal and non-conformal) supersymmetric gauge theories that

describe multiple membranes. Our starting point was gauged N = 8 supergravity in three

dimensions. Performing the limit of global supersymmetry and making different choices

for the embedding tensor we were able to reproduce a variety of membrane actions.

In particular, we have shown that the conformal gaugings, triggered by the anti-

symmetric SO(N) representation fabcd, led to the Bagger-Lambert theory describing con-

formal invariant multiple M2-brane actions. The non-conformal gaugings, triggered by the

fabcI representation, led to multiple D2-brane actions. Finally, the self-dual anti-symmetric

SO(8) representation f+
IJKL (in combination with fabcd) led to a massive deformation of

the Bagger-Lambert theory, whereas the symmetric traceless hIJ representation led to a

topologically massive gauge theory.

We would like to stress that in addition to these known results, our results also allow

one to combine the different ingredients (subject to the quadratic constraints). This would

lead to generalisations of the previously discussed theories, whose membrane interpretation

might be worth investigating. It is also worthwile to investigate whether the procedure we

introduced to define the limit of global supersymmetry is unique or whether other limits

are possible.

On a different note, in this paper we showed how starting from a gauged supergravity

theory a variety of globally supersymmetric theories could be constructed. It would be

interesting to apply this technique to other situations as well. For instance, one could

consider cases with less supersymmetry and compare with the results of [44, 45] for N = 4

and [22, 23] for N = 6. A distinguishing difference between the N = 8 and N = 6 cases

is that, whereas the conformal N = 8 embedding tensor can only be defined as copies of

the 4-index Levi-Civita symbol, i.e., with SO(4) gauge groups inside SO(N) for N = 4k

with k integer, the conformal N = 6 embedding tensor can be defined for any U(N) gauge

groups [29]. This is related to the fact that for N = 6 the global symmetry group is U(N)

and hence, using complex notation, the relevant embedding tensor can be expressed in

terms of Kronecker delta’s, for any N , instead of a Levi-Civita tensor, for special values of

N . This fact has been used in the recent constructions of [22, 23].
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Finally it would be interesting to apply the procedure to construct globally super-

symmetric theories out of locally supersymmetric theories in different dimensions and, in

particular, to see whether some of them can be interpreted as the worldvolume theories of

multiple branes.
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A. Useful relations

A.1 Conventions

We use the following notation for the different indices:

• I, J, . . . = 1, . . . , 8 for the SO(8) R-symmetry vector indices, which will be split up

according to:

– I = (i, 8) with i, j, . . . = 1, . . . , 7 when the R-symmetry is broken to SO(7),

– I = (Ī ,
¯
I) with Ī , J̄ . . . = 1, . . . , 4 and

¯
I,

¯
J . . . = 5, . . . , 8 when the R-symmetry

is broken to SO(4) × SO(4),

• A,B, . . . = 1, . . . , 8 for the SO(8) R-symmetry spinor indices,

• Ȧ, Ḃ, . . . = 1, . . . , 8 for the SO(8) R-symmetry conjugate spinor indices,

• a, b, . . . 1, . . . , N for the SO(N) fundamental indices,

• I,J , . . . = (I, a) for the SO(8, N) fundamental indices,

• α = [IJ ] = ([IJ ], [ab], Ia) for the SO(8, N) adjoint indices,

•
¯
α,

¯
β, . . . are flat indices corresponding to the local SO(8) × SO(N) action.

Note that our conventions differ from those of [39] by an SO(8) triality rotation in order

to be compatible with the supergravity results of [27]. Moreover, we employ the conven-

tion that summation over the antisymmetric index pairs [ab] and [IJ ] is accompanied by

a factor of 1
2 .
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A.2 SO(8, N) structures

In order to compute the various components of the Maurer-Cartan forms and of Vα

¯
α to

lowest order as used in the main text, we need the explicit form of the Lie algebra so(8, N).

In covariant form it reads

[

tIJ , tKL
]

= 2
(

ηI[KtL]J − ηJ [KtL]I
)

, (A.1)

with the indefinite ηIJ = (δIJ ,−δab). Splitting this in a SO(8) × SO(N) covariant form

(and redefining tab → −tab) one finds

[

tIJ , tKL
]

= 2
(

δI[KtL]J − δJ [KtL]I
)

,
[

tab, tcd
]

= 2
(

δa[ctd]b − δb[ctd]a
)

,
[

tIJ , tKa
]

= −2δK[ItJ ]a ,
[

tab, tIc
]

= −2δc[atIb] , (A.2)
[

tIa, tJb
]

= δIJ tab + δabtIJ .

This corresponds to the following structure constants

fab,cd
ef = 8δ[a[eδ

b][cδd]
f ] , f IJ,KL

PQ = 8δ[I [P δ
J ][KδL]

Q] ,

f IJ,Ka
Lb = −2δK[IδJ ]

Lδ
a
b , fab,cI

dJ = −2δc[aδb]
dδ

I
J ,

f Ia,Jb
cd = δIJδa

[cδ
b
d] ,

(A.3)

where we use the conventions that summation over antisymmetric indices is accompanied

by a factor of 1
2 , i.e., [tab, tcd] = 1

2f
ab,cd

ef t
ef , etc.

For the computations of Vα

¯
α one has to insert (2.1) into (2.7) and use the first of the

BCH relations

e−ABeA = B +
[

B,A
]

+
1

2!

[

[B,A], A
]

+
1

3!

[

[[B,A], A], A
]

+ · · · ,

e−AdeA = dA+
1

2!

[

dA,A] +
1

3!

[

[dA,A], A
]

+ · · · .
(A.4)

This yields the following components

Vab
cd = 2δa

[cδ
b
d] + 2δ[a[cX

b]IXI
d] + O(X4) ,

Vab
cI = 2δ[acX

b]
I −X [a

IX
b]JXJ

c −
1

3
X [a

Jδ
b]

cX
JdXd

I + O(X4) ,

Vab
IJ = −2X [a

IX
b]

J + O(X4) ,

VIJ
ab = −2XI

[aX
J

b] + O(X4) ,

VIJ
KL = 2δI

[Kδ
J

L] + 2δ[I [KX
J ]aXa

L] + O(X4) ,

VIJ
Ka = −2X [I

aδ
J ]

K −X [I
aX

J ]bXb
K −

1

3
XL

aX
LbXb[IδJ ]

K + O(X4) ,

VIa
bc = −2XI

[bδ
a
c] −

2

3
XI

[bX
J

c]X
Ja + O(X4) ,

VIa
Jb = δI

Jδ
a
b + 2Xa[IXJ ]

b + O(X4) ,

VIa
JK = −2Xa

[Jδ
I
K] −XIbXa

[JX
b
K] + O(X4) .

(A.5)
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For the various components of the Maurer-Cartan forms (2.2) one finds by use of the second

of the BCH formulas (A.4)

Qµ
ab = ∂µX

I[aXb]I + ΘαβAµ
αVβ

ab + O(X3) ,

Qµ
IJ = ∂µX

a[IXJ ]a + ΘαβAµ
αVβ

IJ + O(X3) ,

Pµ
Ia = DµX

Ia + O(X3) ,

(A.6)

where the covariant derivative reads

DµX
aI = ∂µX

aI + ΘαβAµ
αVβ

Ia . (A.7)

Furthermore we expand the T-tensor:

TIJ,KL = −Θab,IJX
a
KX

b
L + 4ΘaI,bKX

a
JX

b
L + 2ΘaI,KLX

a
J + ([IJ ] ↔ [KL])

)

+ΘIJ,KL + O(X3) , (A.8)

TIJ,Ka = −Θab,cdX
b
KX

c
IX

d
J + Θbc,LKX

b
IX

c
JX

L
a

−
1

2
ΘIJ,bcX

b
KX

cLXL
a +

1

6
ΘIJ,abX

LbXLdXd
K

−
1

2
ΘIJ,PQX

P
aX

QbXb
K +

1

6
ΘIJ,KLX

P
aX

PbXLb

−ΘaK,bcX
b
IX

c
J + 2Θab,c[IX

c
J ]X

b
K + 2ΘKL,b[IX

b
J ]X

L
a

+2ΘaK,b[IX
b
J ] + ΘIJ,abX

b
K + ΘIJ,KLX

L
a + ΘIJ,Ka + O(X4) ,

TIJ,ab = −Θab,cdX
c
IX

d
J − ΘIJ,KLX

K
aX

L
b

+2Θab,c[IX
c
J ] + 2ΘIJ,K[aX

K
b] − 4Xc

[IΘJ ]c,K[aX
K

b] + ΘIJ,ab + O(X3) ,

where we suppressed in the first line an antisymmetrization in [IJ ] and [KL].
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